You are here

Press Releases from AlphaMed Press

Comment

Discuss

Embargo Policy: Articles for STEM CELLS and STEM CELLS Translational Medicine are embargoed for release until 9 a.m. Eastern U.S. time on the day the article is posted online. This policy applies to members of the media, authors, institutions' public information officers, and the public. Authors may not discuss their work with the media until 1 week before the mailing date or 1 week before online posting of the article, whichever is earlier, and must ensure that the media representatives agree to abide by the embargo policy. STEM CELLS Translational Medicine may refuse to publish a manuscript, despite acceptance for publication, if it has been prematurely released to the press.

November 14, 2013

A team of researchers from Gifu Pharmaceutical University and Gifu University in Japan has published results demonstrating that a type of protein found in stem cells taken from adipose (fat) tissue can reverse and prevent age-related, light-induced retinal damage in a mouse model, offering hope for those faced with permanent vision loss.

The research, published in the latest issue of STEM CELLS Translational Medicine, has determined that a single injection of adipose-derived stem cells (ASCs) reduced the retinal damage induced by light exposure in mice. Also, the study found that adipose-derived stem cells in conditioned medium inhibited the retinal damage by hydrogen peroxide and visible light both in the medium and in live mice.

Moreover the research revealed that a type of protein called progranulin found in the ASCs might be what plays the pivotal role in protecting against light-induced eye damage.

November 4, 2013

A stem cell therapy previously shown to reduce inflammation in the critical time window after traumatic brain injury also promotes lasting cognitive improvement, according to a pre-clinical study reported in the current issue of STEM CELLS Translational Medicine.

Cellular damage in the brain after traumatic injury can cause severe, ongoing neurological impairment and inflammation. Few pharmaceutical options exist to treat the problem. About half of patients with severe head injuries need surgery to remove or repair ruptured blood vessels or bruised brain tissue.

A stem cell treatment known as Multipotent Adult Progenitor Cell (MAPC®) therapy, has been found to reduce inflammation in rats immediately after traumatic brain injury, but no one had yet gauged its usefulness in promoting recovery of neurological function over time. Now, a group of scientists studying that question has come up with a preliminary answer.

October 15, 2013

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), show great promise in regenerative medicine due to their ability to be “coaxed” into becoming different specific types of cells. These cells can then go on to help the body heal itself by replacing or repairing damaged or dead cells.

However, the current methods for inducing neural stem cells involve time-consuming, multiple labor-intensive steps that cannot be easily automated or made GMP (good manufacturing practice) compliant for clinical grade manufacture. In addition, not many of the neural stem cells produced this way can be expanded and coaxed into becoming different neural subtypes specific to the brain regions responsible for controlling different functions.

October 8, 2013

The team, from the University of Louisville’s Cardiovascular Innovation Institute (Louisville, Ky.), had previously shown in rat studies that stem cell treatment immediately following an attack aided recovery by improving blood flow in the smallest vessels of the heart. This time the goal was to determine if the treatment was still effective if applied later in time.

“We also were seeking a more efficient delivery method for the stem cells by utilizing the heart patch model. Most studies employing an injection of stem cells encounter swift cell death or cell washout from the target tissue,” said Amanda LeBlanc, Ph.D., who led the investigation along with Stuart Williams, Ph.D., the institute’s executive and scientific director.

September 9, 2013

MS is a neurodegenerative disease characterized by inflammation and scar-like lesions throughout the central nervous system (CNS). There is no cure and no treatment eases the severe forms of MS. But previous studies on animals have shown that transplantation of mesenchymal stem cells (MSCs) holds promise as a therapy for all forms of MS. The MSCs migrate to areas of damage, release trophic (cell growth) factors and exert neuroprotective and immunomodulatory effects to inhibit T cell proliferation.

MS-related clinical trials have all confirmed the safety of autologous MSC therapy. However what is unclear is whether MSCs derived from older donors have the same therapeutic potential as those from younger ones.

September 6, 2013

Numerous stem cell-based therapies are currently under investigation, including an FDA-approved clinical trial focused on employing neural stem cells (NSCs) in delivering drugs targeting invasive brain tumors. “The ability to monitor the time course, migration and distribution of stem cells following transplantation into these patients would provide critical information for optimizing treatment regimens,” Dr. Moats said. “However, no effective cell-tracking methodology had yet garnered clinical acceptance.”

August 19, 2013

In an article featured in the latest issue of STEM CELLS, a research group from Stanford University describes a novel regimen for quashing this immunologic barrier — a short-course treatment with two costimlation-adhesion blockade agents, allowing engraftment of transplanted differentiated stem cells and their prolonged survival in tissue.

"Inducing immune tolerance to human embryonic stem cell graft is critical for the clinical success of regenerative medicine,” commented Dr. Joseph Wu, M.D., Professor of Medicine and Radiology at the Stanford University School of Medicine. “We have realized, however, that traditional immunosuppressive therapies used to prevent solid organ rejection, such as calcineurin inhibitors and corticosteroids, are insufficient to prevent human embryonic stem cell rejection following transplantation.”

August 14, 2013

However, a new study released today in STEM CELLS Translational Medicine indicates that endothelial precursor cells, which are found in the bone marrow, umbilical cord blood, and as very rare cells in peripheral blood, could make a significant difference for these patients’ recovery — even in the later stages of stroke. In animal studies, the treatment minimized the initial brain injury and helped repair the stroke damage.

“Previous studies indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improved functional recovery in stroke models,” noted Branislava Janic, Ph.D., a member of Henry Ford Health System’s Cellular and Molecular Imaging Laboratory in Detroit and lead author of the study. “We wanted to examine the effect of hUCB-derived AC133+ endothelial progenitor cells (EPCs) on stroke development and resolution in rats.”

August 8, 2013

“In this work, we describe a highly innovative gene therapy approach, which is being developed along with the NIH and the FDA. Specifically, our group has developed an allogeneic neural stem cell line that is a carrier for a virus that can selectively infect and break down cancer cells,” explained Dr. Lesniak, the University of Chicago’s director of neurosurgical oncology and neuro-oncology research at the Brain Tumor Center.

The stem cell line, called HB1.F3 NSC, was recently approved by the FDA for use in a phase I human clinical trial.

GBM remains fatal despite intensive treatment with surgery, radiation and chemotherapy. And while cancer-killing viruses have been used in clinical trials to treat therapeutically resistant and infiltrative tumor burdens throughout the brain, “there were major drawbacks,” Dr. Lesniak explained.

July 12, 2013

As such, it could lead to a purer, safer therapeutic grade of stem cells for use in regenerative medicine.

The discovery of iPSCs holds great promise for regenerative medicine since it is possible to produce patient-specific iPSCs from the individual for potential autologous treatment — that is, treatment using the patient’s own cells. This avoids the possibility of rejection and numerous other harmful side effects.

CD34+ cells are a type of blood stem cell that has been linked to proliferation. However, collecting enough CD34+ cells from a patient to produce an adequate amount of blood usually requires a large volume of blood to be taken from the patient. But scientists found a way around this, as outlined in the new study conducted by researchers in the Department of Medicine and Institute for Human Genetic, University of California-San Francisco. They were led by Yuet Wai Kan, M.D., FRS, and Lin Ye, Ph.D.

Pages