You are here

Press Releases from AlphaMed Press

Comment

Discuss

Embargo Policy: Articles for STEM CELLS and STEM CELLS Translational Medicine are embargoed for release until 9 a.m. Eastern U.S. time on the day the article is posted online. This policy applies to members of the media, authors, institutions' public information officers, and the public. Authors may not discuss their work with the media until 1 week before the mailing date or 1 week before online posting of the article, whichever is earlier, and must ensure that the media representatives agree to abide by the embargo policy. STEM CELLS Translational Medicine may refuse to publish a manuscript, despite acceptance for publication, if it has been prematurely released to the press.

February 7, 2013

Kidney transplants have long been the treatment of choice for many patients with end-stage renal disease, and the short-term results are excellent. But unfortunately, the viability of these kidneys over time has not improved accordingly, often due to fibrosis, which is a scarring of the transplanted organ generally caused by the immune system rejecting it.

 

The LUMC team, led by Marlies E.J. Reinders, M.D, Ph.D., and Ton J. Rabelink, M.D., Ph.D., decided to test whether stem cells might keep fibrosis in check. They focused on mesenchymal stromal cells, a type of stem cell found throughout the body, including in bone marrow.

“Mesenchymal stromal cells (MSCs) are an interesting candidate due to their immunosuppressive and regenerative properties,” Dr. Reinders explained. “Of importance, no clinical studies have investigated their effects on rejection and fibrosis in organ transplantation.”

January 11, 2013

In DMD, the most common form of muscular dystrophy, patients lack a large, rod-like protein called dystrophin located primarily in muscles used for movement and in heart muscle. The dystrophin is part of a group of proteins that acts as an anchor, connecting each muscle cell's structural framework with the lattice of proteins and other molecules outside the cell. Without dystrophin, many of the muscle cells in the heart are damaged, subsequently die and are replaced by connective tissue.

“Many Duchenne MD patients suffer from dilated cardiomyopathy (DCM), a condition in which the chambers of the heart are enlarged and weakened,” explained the study’s lead author, Suzanne Berry, Ph.D. “As a result the heart can’t efficiently pump blood to the body and many patients eventually die. We hypothesized that mesoangioblast stem cells (ADM) found in the walls of large blood vessels, in this case the aorta, would restore dystrophin and therefore alleviate or prevent DCM.”

December 21, 2012

Scientists Daniel Peterson and Laura Shin used MSC cells extracted from human bone marrow and grafted them into wounds of healthy mice and mice with diabetes. Mice in both groups each had two separate wounds to better allow the researchers to study the precise role the cells played in healing.

Some mice in each group received MSC cells in one wound while others did not receive the cells at all.

After studying the differences in healing, signaling and cell populations in the mice, Peterson and Shin learned that both normal and impaired mice given MSC cells healed more quickly, even in wounds that did not receive direct MSC cell grafts.

“The mice that received MSC cells demonstrated a systemic response,” Peterson said. “This suggests that the key to repairing injured tissue does not hinge on where you place the MSC cells in the body, but on learning exactly how the MSC cells recruit their counterparts already in the body.”

December 21, 2012

The study, funded by the British Heart Foundation (BHF), Medical Research Council (MRC) and Wellcome Trust, outlines a way for scientists to get the cells they need to make induced pluripotent stem (iPS) cells (3) from a routine blood sample. Previously scientists have struggled to find an appropriate type of cell in the blood that can be turned into a stem cell, and often make iPS cells from skin or other tissues, which can require a surgical procedure, like a biopsy.

Dr Amer Rana and his colleagues at the University of Cambridge grew patients’ blood in the lab and isolated what are known as ‘late outgrowth endothelial progenitor cells’ (L-EPCs) to turn into iPS cells. The iPS cells can then be turned into any other cell in the body, including blood vessel cells or heart cells – using different cocktails of chemicals. Scientists use these cells to study disease, and ultimately hope to grow them into tissue to repair the damage caused by heart and circulatory diseases.

December 4, 2012

MEDLINE is the premier bibliographic database of journal citations and abstracts for approximately 5,400 biomedical journals worldwide. Access to MEDLINE is freely available through PubMed.

STEM CELLS Translational Medicine’s inclusion in MEDLINE/PubMed is significant in enhancing the visibility of our authors’ work and to achieving the journal’s vision – to help speed expertly executed translations of emerging lab discoveries into legitimate clinical trials and bedside application which ultimately will improve patient outcomes,” said Managing Editor, Ann Murphy.

“Just as remarkable is the fact that the Journal has been fully accepted by MEDLINE within its first year of publication … a feat that few journals earn,” adds Anthony J. Atala, Editor.

November 28, 2012

Treatment options for gliomas, the most common type of primary brain tumors, are very limited due to their diffuse invasive nature and their ability to evade conventional chemotherapy and radiation treatments. Stem cells have shown great promise as a therapy, but how best to deliver them to the tumor site has proven a challenge.

The most frequently used method, surgical implantation, has a low survival rate for the stem cells plus the procedure itself can lead to complications such as inflammation. Injecting the cells into the blood stream is another way, but it carries an increased risk of the cells accumulating in peripheral organs, which could cause side effects and also means that not enough of the stem cells are getting to the targeted tumor.

November 15, 2012

 

“Researchers have been seeking a way to control the initiating cancer stem cell population, considered key to realizing the long-term survival of these patients,” said Drs. Chifumi Kitanaka and Atsushi Sato, who led the team of scientists from Yamagata University in Japan on the study. “Previous reports have underscored the idea that differentiation therapy, which involves controlling stem cells’ development into particular cells or tissue, is a promising approach to depleting the tumor-initiating cells in glioblastomas and in preventing their recurrence.”

November 1, 2012

 

Monika Ehrhart-Bornstein, Ph.D., of Dresden University of Technology’s Center for Regenerative Therapies (Germany), was a lead investigator on the team. “Chromaffin progenitor cells seem to be a promising cell source due to the potential use in autologous transplantations, which avoids the possibility of immune rejection,” she explained. “Our team had recently described how we isolated chromaffin progenitor cells from the adrenal glands of cows and then treated them so that they differentiated into functional neurons. In this subsequent study, we wanted to learn whether these cells could also be obtained from adult human adrenal glands and then forced to differentiate into neurons, as a prerequisite for future use in transplantation trials.”

October 12, 2012

 

"In China, hepatitis B virus (HBV) infection accounts for the highest proportion of liver failure cases. While liver transplantation is considered the standard treatment, it has several drawbacks including a limited number of donors, long waiting lists, high cost and multiple complications. Our study shows that mesenchymal stem cell (MSCs) transfusions might be a good, safe alternative," said Fu-Sheng Wang, Ph.D., M.D., the study's lead author and director of the Research Center for Biological Therapy (RCBT) in Beijing.

Wang along with RCBT colleague, Drs. Ming Shi and Zheng Zhang of the Research Center for Biological Therapy, The Institute of Translational Hepatology led the group of physician-scientists from the centers and Beijing 302 Hospital who conducted the study.

October 3, 2012

Now, researchers at the Mayo Clinic, Rochester, Minn., think they might have found an answer. Reporting in the October issue of STEM CELLS Translational Medicine, they detail a low-cost, highly-effective way to detect and then purge at-risk cells during an early stage in the differentiation process.

"Strategies to improve the safety of stem cell therapy have generally focused on separating or depleting damaged cells after the cells have differentiated. However, while this method was able to diminish the number of tumors formed as well as significantly reduce their size, the technical burdens and cost of specialized reagents and equipment needed to do so remain a challenge for widespread clinical applications," says lead investigator Timothy J. Nelson, M.D., Ph.D. He directs the cell biology group within the clinic's Regenerative Strategies team.

Pages