You are here

Press Releases from AlphaMed Press

June 8, 2020

Durham, NC (June 8, 2020) - A new study released today in STEM CELLS addresses a significant problem that has been confronting human mesenchymal stem cells (hMSCs) therapy. While hundreds of clinical trials involving thousands of patients are under way to test hMSCs' ability to treat everything from heart disease to brain injury, there has been no way to determine prior to the donor undergoing a painful and expensive surgical harvesting of bone marrow whether or not it would be worth the effort. However, this new study, conducted by scientists at the Agency for Science, Technology and Research (A*STAR), Singapore, identifies a potential biomarker for prescreening donors for their MSCs' growth capacity and potency.

June 4, 2020

Durham, NC (June 4, 2020) - In the search for a cure for Alzheimer's disease, mesenchymal stem cells and their derived extracellular vesicles (MSC-EVs) offer much promise, thanks to their protective and anti-inflammatory properties. The results from a new study done on mice, released today in STEM CELLS Translational Medicine, strengthens this idea by showing for the first time that MSC-EVs delivered by way of the nasal passages reduce inflammation - believed to be a prime factor in Alzheimer's disease. They also trigger actions that guard the brain's neurons against further degenerative effects.

The study, led by Silvia Coco, Ph.D., at the University of Milano-Bicocca in Italy, lays the foundation for future studies that might point the way to a cure for this devastating disease.

June 1, 2020

Durham, NC (June 1, 2020) - The gene p53 is extremely important in cell biology and, hence, the world of cell replacement therapy. Its role is to regulate the cell cycle and halt the formation of tumors, leading to its nickname the "tumor suppressor gene." However, previous efforts to determine whether p53 is behind programmed cellular death (apoptosis) induced by DNA damage in pluripotent embryonic stem cells (ESCs) produced conflicting results. Initial studies said that it was not; later studies concluded that it was.

A new study released today in STEM CELLS sorts through this maze of contradictions to finally determine that the multiple roles of p53 in cell cycle regulation and apoptosis are acquired during pluripotent stem cell differentiation.

May 27, 2020

Durham, NC (May 26, 2020) - In a study released today in STEM CELLS Translational Medicine (SCTM), a team led by researchers at the Eugenia Menni Research Centre (CREM) in Brescia, Italy, show for the first time how stem cells collected from human amniotic membrane (one of the two fetal membranes forming the amniotic sac, which surrounds the fetus during pregnancy and is generally discarded after a baby's birth) can slow the progression of scarring in pulmonary fibrosis. This pre-clinical study could lead to new treatments for this deadly disease.

May 18, 2020

Durham, NC (May 18th, 2020) - The results of a clinical trial released today in STEM CELLS Translational Medicine demonstrate how a topical solution made up of stem cells leads to the regrowth of hair for people with a common type of baldness.

May 7, 2020

Durham, NC (May 7, 2020
) - Infection, inflammation, trauma, disease, contact lenses - all of these and more can lead to corneal scarring, which according to the World Health Organization is a leading cause of blindness worldwide. While corneal transplant remains the gold standard to treat this condition, patient demand far outweighs donor supply. However, in a study released today in STEM CELLS Translational Medicine researchers demonstrate a potential solution to this major problem.

April 30, 2020

Durham, NC (April 30, 2020) - A new study released today in STEM CELLS suggests for the first time that regulatory T-cells (Treg) induced by mesenchymal stromal cells can yield an abundant replacement for naturally occurring T-cells, which are vital in protecting the body from infection. Led by Rita I. Azevedo, Ph.D., at the Instituto de Medicina Molecular in Lisbon, Portugal, this study could yield new treatments for a long list of chronic inflammatory diseases that includes everything from cancer and asthma to inflammatory bowel disease, rheumatoid arthritis and more.

March 26, 2020

Durham, NC (March 26, 2020)– Researchers have potentially made a breakthrough in the war on antibiotic-resistant superbugs – including MRSA, which kills an estimated 20,000 people in the United States alone each year – with a new discovery whose details are published today in STEM CELLS Translational Medicine. The study, by researchers in the College of Veterinary Medicine at Cornell University, demonstrates for the first time that mesenchymal stromal cells (MSCs) are an effective weapon against bacteria in biofilm.

March 17, 2020

DURHAM, N.C. MARCH 17, 2020 - A new study released today in STEM CELLS Translational Medicine could provide a major breakthrough in finding a cure for gastroparesis, a painful condition in which the stomach is unable to empty itself of food. Among the symptoms are heartburn, abdominal cramps, nausea, vomiting and feeling full quickly when eating. In the most severe cases, patients can experience dehydration, malnutrition and bezoars — which occur when food hardens and, in turn, can block the opening from the stomach into the small intestine (the pylorus).

The study, led by Prabhash Dadhich, Ph.D., and Khalil N Bitar, Ph.D. AGAF’s laboratory, at Wake Forest School of Medicine, shows how transplanting neural stem cells in combination with interstitial cells of Cajal (ICCs) can restore the stomach muscles’ function and enable food to once again move normally through the digestive system.

March 12, 2020
DURHAM, N.C. MARCH 12, 2020 - In a new study released today in STEM CELLS Translational Medicine (SCTM), researchers at the University of California, Davis and the Chinese Academy of Science demonstrate how induced pluripotent stem cells can provide a renewable supply of endothelial cells. These cells can then be genetically modified to produce high levels of a clotting protein that was used to successfully treat hemophilia A in mice.

Hemophilia A is a disorder in which the blood does not clot normally, causing people with the condition to bleed more than normal after an injury or surgery. In the most severe cases, this can lead to disability or death.